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ABSTRACT 
In this study, we present a method for the processing and analysis of 
overhead video recordings of dancers in a silent disco. Silent-disco 
events present experimenters with an ecologically valid environment 
in which to study the interactions between music and the social 
environment in large groups of participants compared to laboratory 
settings. The toolbox developed so far allows us to investigate the 
grouping dynamics of dancers in a silent disco, and how these 
dynamics change over time. Specifically, we found that participants 
listening to earworms are more grouped than those listening to 
matched controls. Further development will allow for more detailed 
investigation of grouping, individual movement and switching 
behavior under various conditions. 

I. INTRODUCTION 
Making music and moving to music is very much a social 

experience. Evolutionarily, one theory by Freeman (2000) 
suggests that music as a social experience fosters group 
cohesion and social bonding through jointly synchronized 
movement. For example, it has been shown that people 
synchronize their movements both with rhythms generated by 
musicians or in coordination with other observers. Music 
education also plays an important role in the development of 
social skills, such as empathy (Kalliopuska & Ruókonen, 
1986; Rabinowitch, Cross, & Burnard, 2012). For example, 
joint music making in children has been found to increase 
cooperative behaviour (Kirschner & Tomasello, 2010), and 
drumming with a social partner improves synchronisation 
accuracy in children (Kirschner & Tomasello, 2009). Taken 
together, these findings show that music fulfils a role in the 
development of social behaviour; Freeman (2000) considers 
music and dance to serve as `a technology of social bonding’ 
(Freeman, 2000, p. 411). 

There also seems to be an intrinsic relationship between 
movement and music, as infants are able to induce rhythmic 
regularities from birth (Winkler, Háden, Ladinig, Sziller, & 
Honing, 2009), as well as move in time to such induced 
rhythms (Zentner & Eerola, 2010). The spontaneous 
movement to rhythms is also seen in adults (Madison, 2006; 
Zatorre, Chen, & Penhune, 2007). Entrainment plays an 
important role in linking the musical, rhythmic, movement to 
social behaviour. That is, moving in synchrony with a 
rhythmic pulse (temporal) or with other people (affective). 
The latter plays a role in-group dancing and is shown to 
induce pro-social feelings and behaviour (Phillips-Silver & 
Keller, 2012). 

Research on the interaction of music and social behaviour 
so far has mainly consisted of laboratory experiments and 
(self-report) questionnaires (Kirschner & Tomasello, 2009; 
Hove, Spivey, & Krumhansl, 2010). The silent-disco set-up 

has also been used in the laboratory research: Hadley, Tidhar, 
and Woolhouse (2012) showed that participants listening to 
the same channel are more engaged with each other than with 
participants listening to other channels. Similarly, Leman, 
Demey, Lesaffre, Noorden, and Moelants (2009) recreated a 
dance-club setting in a motion capture laboratory in order to 
investigate music-driven social interaction. While these 
studies allow experimenters to control the conditions of the 
environment carefully, they are limited in the number of 
participants interacting at once. Additionally, laboratory 
participants are faced with demand characteristics that are 
related to their awareness of the study’s true nature and to 
attitudes towards the experimenter (Nichols & Maner, 2008). 

The current study provides an ecologically valid setting to 
study music-driven social interaction through the use of silent-
disco events, with overhead video being recorded. This 
minimises the interaction between experimenter and 
participant, which minimises demand characteristics. For the 
participants, these events should primarily function as a fun 
night out with their peers. In this paper, we present a method 
to process and analyse the data acquired using this overhead 
video recording set up. 

The first dataset was recorded at an event organised as part 
of the ESCOM 2015 conference, where participants were 
divided into one of two conditions: songs known to be 
earworms and matched controls. Earworms, defined by the 
Oxford English Dictionary as ‘a catchy song or tune that runs 
continually through a person's mind’, are a widely 
experienced example of involuntary cognition (Beaman & 
Williams, 2010). Most research on earworms has concentrated 
on the phenomenology of the experiences through interviews, 
diary study and questionnaires (Beaman & Williams, 2010; 
Williamson & Jilka, 2014). The present study places these 
earworms in a social environment and investigates their 
influence on grouping behaviour. We hypothesise that the 
earworm group would show more grouping behaviour 
compared to the control, as measured through increased 
clustering coefficients. One possible rationale for this 
hypothesis is that these songs, by virtue of being earworms, 
could be considered more memorable and thereby facilitating 
participants’ forming social groups with other listeners. 

We use a second dataset to test the pipeline, which 
consists of a standalone silent-disco event where participants 
were able to switch between channels. The channels in this 
event consisted of pop music from three time periods from the 
1940s to present. We hypothesise grouping behaviour to 
increase with recency. One rationale based on personal 
observations is that this is an effect of age, as many 
participants appeared to be in their twenties and thirties. 
However, it is important to note that no demographic data has 
been obtained for the current events. 

Silent Disco Silent Disco

https://silentdisco.de
https://silentdiscotheque.com/
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II. METHODS 
A. Data Acquisition 

Data were acquired on two separate events, both being 
held at the Museum of Science and Industry (MOSI) in 
Manchester. Video was recorded using a camera suspended 
above the dance floor at an angle. 

1) ESCOM Dataset. This event was organized as part of 
the evening programme of the ESCOM 2015 conference. This 
event consisted of one session, four hours in length. There 
were two channels: earworms (red) and a matched control 
(green). Participants were unable to switch between channels. 
Care was taken to make sure the dance floor was dark enough 
and a model headphone with large lights on the earpieces was 
used to make them easily distinguishable. Around the 
periphery, some light was present from exhibition pieces, but 
applying a mask before processing filtered this out.  

2) MOSI Dataset. This event was a standalone silent disco, 
consisting of one session, approximately three hours in length. 
Here people could freely switch between three themed 
playlists: 1940s, 1950s, 1960s (blue); 1980s and 1990s (red); 
and post- 2000 (green). The same model of headphones was 
used, and extra care was taken with respect to ambient 
lighting. Again, there was some peripheral lighting present 
that required masking. The first half of this dataset had to be 
discarded because of camera movement (zooming and 
panning) during the first half of the evening, yielding one hour 
and 24 minutes of useful data.  

B. Data Processing 
Data processing consists of the following stages: mask 

creation, modeling of contours and centers, creating 
(undirected) graphs, extracting graph measures, statistical 
analysis. Figure 1 shows example stills of the dance floor and 
the first two processing steps. Image processing was done 
using the OpenCV library (Bradski, 2000), graph creation and 
processing is done using graph-tool module (Peixoto, 2014), 
both for Python 2.7. 

1) Mask Creation. For each video, a mask is created to 
reduce noise from environmental features, such as spotlights, 
such that the masked regions will be ignored in further pro- 
cessing. Mask creation is done manually, with the following 
steps. First, for a number of frames, selected semi-randomly, 
the contours are modelled (following section), drawn on the 
frame. These frames are saved individually as images. Then, 
the contours that belong to environmental features are blacked 
out manually using a graphics editor, by tracing the outline of 
each contour and filling it in. The remainder of the canvas is 
left white. Then, while applying the mask, for a new set of 
frames the contours are modeled and the mask is updated. 
This process is repeated a number of times until no 
environmental features show up.  

2) Contour Modelling. In order to extract the relevant data 
from each frame, contours describing the outline of visual 
features are modelled; in this case, these features consist of 
the lights on the headphones. Contours are modelled for each 
colour layer individually. Given that the video is shot in RGB 
and the headphone colours are red, green and blue, each 
colour layer can be processed separately. Video is sampled at 
a rate of one in every 10 frames (corresponding to 2.5 frames 
per second). First, the sampled images are binarized using 
Otsu’s method for thresholding (Otsu, 1979) with Gaussian 
smoothing (kernel size 5). The mask is applied to these 
binarized images, and contours are extracted from them. 
Finally, the centres of the contours are determined; for each 
centre, the x-axis and y-axis coordinates, colour, and frame 
number are saved.  

3) Graph Creation. Undirected graphs are created based 
on the centers of the modeled contours. These graphs provide 
snapshots of the dance floor at a time and describe how 
connected participants are. Per frame, a number of undirected 
graphs are created: one graph describing the entire dance-floor, 
thus containing all centers present in that frame; and one 
graph for each separate color present, thus with all nodes of a 
given color. The vertices are drawn based on the x-axis and y-
axis location of the centers. Edges are drawn based on the 

 (A)  (B)  (C) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (D)  (E)  (F) 

Figure 1.  Example data for ESCOM (top row) and MOSI (bottom row) datasets; (A) and (D) example still of the dance floor, 
(B) and (E) dance floor mask with environment light blacked out, (C) and (F) example still with contours drawn. 
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Euclidean distance between the vertices, using a threshold to 
set an upper limit. In other words, two nodes will be 
connected if their distance is less than the predefined 
threshold.  

At first, graphs are created for a period of approximately 
30 minutes in the middle of the event for a wide range of 
thresholds, between 50 and 900 points. For these data the 
clustering coefficients, average vector degree and number of 
vectors (following section) are calculated and plotted. Based 
on visual inspection of these plots three thresholds are 
selected for further analysis, namely 150, 200 and 250 points. 
Criteria used to determine the respective thresholds are the 
amount of noise as indicated by the size of standard deviations 
and the relative stability of the signal over time. For the 
ESCOM dataset, 150 points horizontally correspond to 60–
120 cm at the near and far ends of the dance-floor, 
respectively; 150 points vertically correspond to roughly 120 
cm at the near end of the dance-floor. For the MOSI dataset, 
the same distance thresholds are used, and these correspond to 
roughly the same distances.  

4) Graph Statistics. For each graph the following statistics 
are determined: local clustering, global clustering, and 
average vertex degree. The local clustering coefficient is 
defined as follows by Watts and Strogatz (1998).  

𝑐! =  
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑣!
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑣!

 

Thus, the local clustering coefficient ci increases when the 
neighbours of vertex vi are more interconnected, with 
completely interconnected neighbours of vi resulting in ci = 1. 
Then, this value is averaged over vertices:  

𝑐 =  
1
𝑛

 𝑐!
!

 

Where local clustering takes the mean of a ratio, global 
clustering takes the reverse approach. Newman (2003) defines 
the global clustering coefficient as follows. 

𝑐 =  
3 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠
 

Here, a connected triple consists of a vertex connected to an 
(unordered) pair of other vertices, when the third edge is filled 
in a triangle is formed. Thus, a triangle consists of three triples, 
hence the multiplication factor.  

Both clustering coefficients measure the density of 
triangles in the graph. However, local clustering gives a 
higher weight to low-degree vertices (Newman, 2003).  

C. Statistical Analysis 
A linear model is fitted for each of the three measures 

respectively, with group and time segment as independent 
variables. For the ESCOM data, group is a factor with two 
levels, corresponding to the green and red channels 
respectively, and time segment is a factor with 30 levels, 
corresponding to approximately eight minutes per segment. 
For the MOSI data, group is a factor with three levels, 
corresponding to the red, green and blue channels respectively, 
and time segment is a factor with 15 levels, corresponding to 
approximately six minutes per segment. 

III. RESULTS 
A. Video Processing 

We created a toolbox for the processing and analysis of 
overhead video data of dancers in a silent disco. The toolbox 
yields consistent measures for both datasets; however, the 
measures are sensitive to the number of people on the dance-
floor. When fewer than 10 participants per colour are present, 
the data seem to become less reliable since the connections 
between participants are less stable; this can be observed in 
figures 2A and 2C and seems to be unrelated to the threshold 
(not shown). The first hour of ESCOM data is unreliable 
because of the low number of participants present (for 
example see figures 2A and 2C). For the MOSI data, the end 
is particularly problematic, because in the last minutes there is 
a sudden jump in the number of vertices present (see figures 
2B and 2D).  

There is also a clear influence of the number of vertices 
detected and the measures themselves. Average vertex degree 
is especially susceptible to this effect; however, both local and 
global clustering measures are also related to the number of 
detected vertices.  

B. Grouping Behaviour (ESCOM) 
For the ESCOM dataset we created a linear model with a 

two-level factor for group and a 30-level factor for time 
segments; then we performed an ANOVA on and calculated 
partial η2 for the model. This was done for three distance 
thresholds (150, 200, 250) and for each of three graph 
measures, respectively (local clustering, global clustering and 
average vertex degree). We follow the guidelines of Cohen 
(1988) for effect sizes, namely small (0.01 < η2 < 0.06), 
medium (0.06 < η2 < 0.14) and large (0.14 < η2). The effects 
discussed in this and the following section will be based on 
the partial η2 using these guidelines; because of the amount of 
data and the number of comparisons we consider significance 
to be less informative of any potential effects.  

Results for local clustering are summarised in table 1. For 
each threshold, there is a main effect of group, a main effect 
of time, and an interaction effect of group × time. The effect 
size for group is inversely related to distance threshold, with 
thresholds 150 (η2 = 0.12) and 200 (η2 = 0.08) showing a 
medium effect and threshold 250 showing a small effect (η2 = 
0.05). The effect size for time does not seem affected by the 
distance thresholds, showing a large effect for each threshold: 
150 (η2 = 0.26), 200 (η2 = 0.27), 250 (η2 = 0.25). The effect 
size for the group × time interaction increases with distance 
thresholds, showing a small effect for thresholds 150 (η2 = 
0.04) and 200 (η2 = 0.05) and a medium effect for threshold 
250 (η2 = 0.06).  

Results for global clustering are summarized in table 2. 
For each threshold, there is a main effect of time and an 
interaction effect of group × time. While there is no main 
effect of group, the effect size seems to be inversely related to 
the distance threshold as seen for local clustering. The effect 
size for time is similar between thresholds 150 (η2 = 0.08) and 
200 (η2 = 0.09), showing a medium effect, but markedly 
higher for threshold 250 (η2 = 0.16) showing a large effect. 
While all group × time interactions are small, as with local 
clustering they seem to increase with the distance threshold: 
150 (η2 = 0.02), 200 (η2 = 0.03), 250 (η2 = 0.04).  
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Results for average vertex degree are summarised in table 
3. For each threshold there is a main effect of group, a main 
effect of time, and an interaction effect of group × time. While 
all effects are large, the effect of time is most pronounced, and 
all reported effects do seem to increase with distance 
thresholds. Group, 150 (η2 = 0.28), 200 (η2 = 0.29), 250 (η2 = 
0.30); time, 150 (η2 = 0.47), 200 (η2 = 0.55), 250 (η2 = 0.59); 
group × time, 150 (η2 = 0.19), 200 (η2 = 25), 250 (η2 = 0.27). 

C. Grouping Behaviour (MOSI) 
For the MOSI dataset we created a linear model with a 

three-level factor for group and a 15-level factor for time 
segments; then we performed an ANOVA on and calculated 
partial η2 for the model. This was done for three distance 
thresholds (150, 200, 250) and for each of three graph 
measures, respectively (local clustering, global clustering and 
average vertex degree).  

Results for local clustering are summarized in table 4. The 
effect size for group is inversely related to distance threshold, 
with thresholds 150 (η2 = 0.16) and 200 (η2 = 0.15) showing a 
large effect, and threshold 250 (η2 = 0.12) showing a medium 

effect. The effect size for time increases with distance 
thresholds, showing a small effect for threshold: 150 (η2 = 
0.04), and a medium effect for thresholds 200 (η2 = 0.06), 250 
(η2 = 0.09). The effect size for the group × time interaction 
does not seem affected by distance thresholds, showing a 
medium effect for each threshold: 150 (η2 = 0.11), 200 (η2 = 
0.11), 250 (η2 = 0.09). 

Results for global clustering are summarized in table 5. 
There is a small effect for all thresholds in both the group and 
the time main effects, as well as for the group × time 
interaction. Group: 150 (η2 = 0.01), 200 (η2 = 0.01), 250 (η2 = 
0.02). Time: 150 (η2 = 0.01), 200 (η2 = 0.01), 250 (η2 = 0.02). 
Group × Time: 150 (η2 = 0.03, 200 (η2 = 0.03), 250 (η2 = 0.04). 

Results for average vertex degree are summarized in table 
6. For all thresholds there is a small main effect of group: 150 
(η2 = 0.04), 200 (η2 = 0.04), 250 (η2 = 0.05). For all thresholds 
there also is a medium main effect of time: 150 (η2 = 0.12), 
200 (η2 = 0.12), 250 (η2 = 0.11). The group × time inter- 
action effect is small for all thresholds: 150 (η2 = 0.04), 200 
(η2 = 0.05), 250 (η2 = 0.06).  

Figure 2. Statistical measures for ESCOM (left) and MOSI (right) datasets with threshold = 200; solid lines show the mean, with 
standard deviation represented by shading for local clustering (C, D), global clustering (E, F) and vertex degree (G, H). 
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IV. DISCUSSION 
The clustering coefficients are related to the number of 

participants present, that is: the number of vertices detected. 
Based on visual inspection of the plots this effect is strongest 
for the average vertex degree. This relation makes intuitive 
sense: as the number of vertices increases it becomes more 
likely for a vertex to be connected to others, especially for 
higher distance thresholds, thus leading to a higher vertex 
degree and increased clustering coefficients.  

Of the graph measures used, it seems that local clustering 
is the best candidate for further investigation and 
interpretation. It shows stability over time compared to the 
global clustering coefficient (compare figure 2C, 2E and 2D, 
2F). While it looks related to the number of vertices present 

(see figure 2), the transformation that happens is not as direct 
as is the case for average vertex degree. In addition, local 
clustering has been used to describe social networks (Newman, 
2003) and it is closely related to the definition of small-
worldness given by Watts and Strogatz (1998) and elaborated 
upon by Newman (2003).  

A. Interpretation of Results 

1) ESCOM. In this dataset, judging from figure 2A, more 
red than green sources are picked up over the course of the 
night. Given that half the headphones were tuned to each 
channel, this suggests that the green light sources were 
detected less reliably than red, there is more red noise present, 
or there is a difference in participant behaviour.  
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The red channel, featuring earworms, shows higher 
clustering compared to the control. One possible explanation 
is that earworms are more memorable, by virtue of running 
through people’s minds. This memorability, in turn, might 
lead to easier synchronization and tighter grouping between 
participants. Following this line of argument, the greater 
number of red sources detected could be attributed to more 
participants listening to earworms being on the dance-floor, 
while the control group was more prone to wandering about.  

2) MOSI. This event allowed people to switch freely 
between channels, figure 2B shows aggregates of people 
switching between channels. The red (1980s and 1990s) and 
green (post-2000) channels seem most popular overall, while 
blue (1940s- 1960s) picks up later during the night. It would 
be of interest to compare songs between the playlists at times 
where a large number of participants switch, specifically 
focusing on popularity and their musical features.  

B. Future Directions 
Investigating (meta-) musical features of music used in 

this experiment was beyond the scope of this research project. 
The songs we used in this experiment all came from the 
Hooked on Music database (Burgoyne, Bountouridis, Van 
Balen, & Honing, 2013). Hooked on Music uses a recognition 
and verification task, combined with musical features, to 
investigate musical memorability and catchiness. These data 
can be combined with the data from these and future silent 
disco experiments. This adds a social dimension to the data, 
informs the analysis and interpretation of current silent disco 
data. Furthermore, in future silent discos conditions can be 
based on the Hooked on Music results.  

While integration of the Hooked on Music data with silent 
disco data could yield richer descriptions, it could also 
increase the complexity given the sheer amounts data present. 
Because of this, we would suggest defining times or sections 
of interest. Suitable targets for further investigation are the 
transitions between songs, and transitions between sections. 
Regions of interest can also be defined around changes in 
musical features, such as tempo changes, as these might have 
an effect on grouping behavior and other measures that can be 
investigated in future silent discos.  

Aside from investigating clustering and other measures 
that consider snapshots of the dance-floor at specific times, 
there is the possibility to examine participants on an 
individual basis. One way this can be done is to track 
individual movement over time, for which (off-the-shelf) 
methods used for surveillance data can be adapted (Ali & 
Dailey, 2012; Fradi & Dugelay, 2015; Hu, Bouma, & Worring, 
2012). This might reveal how movement over time differs per 
listening conditions and to which extent participants 
synchronize their movements. Aside from increasing the 
sampling rate and tracking individual participants, there is the 
possibility to use a smartphone app that records motion, 
borrowing techniques from fitness apps that count steps and 
measure user activity.  

More sophisticated models could be developed to better 
determine a participant’s place in the room. Adding an 
additional camera would allow for more accurate location 
through triangulation, and could potentially take care of 
environmental noise and situations someone is partially 
obscured. Modeling gaze direction would be an ideal addition 

because this allows connections to be drawn more informed 
than when simply using distance as a measure. For example, 
to participants dancing with their backs to one another can be 
very close in physical space, while being part of two different 
social groups existing on the dance floor.  

C. Methodological Improvements 
 Between the three datasets discussed in this paper, there 

have been many improvements regarding the experimental 
setup. However, there are a number of further methodological 
improvements that should be explored. Ambient lighting is a 
clear source of noise in the data. Examples are (spot) lights 
shining on exhibition pieces and walls, as well as reflections 
on the clothes of participants. The masking procedure 
described in section 2.2.1 takes care of the static light sources, 
which account for most of the noise. Moving sources of noise, 
such as reflections on participants, are more difficult to target. 
So far, both ESCOM and MOSI datasets have been processed 
and analyzed using the same parameter settings unless 
mentioned otherwise. The parameters for binarization and 
smoothing can be fine-tuned per dataset to further reduce 
noise. Additionally, in setting up a silent disco, steps can be 
taken to reduce the amount of light on the dance floor while 
maintaining a pleasant environment for the participants.  

The MOSI dataset suffered from camera movement during 
approximately the first half of the evening. To prevent such 
mishaps, all parties should be properly briefed on the 
experimental procedure and setup. This briefing can also 
encompass lighting, as detailed above.  

Channel selection and switching poses a number of 
potential problems. One issue is that the number of 
participants per condition is not static, and cannot be 
controlled directly. While this is an obvious issue, it is also a 
feature, thus it should be controlled for in the analysis through 
normalization. Another issue stems from the location of the 
camera in relation to the dance floor. Since the camera is 
suspended at an angle, occlusions occur when participants 
move around and in front of each other. Using a second 
camera that records simultaneously, if it can be located 
properly, could alleviate these problems as well as noise from 
ambient lighting. However, this would require the images to 
be translated to a common space. This translation is 
technically possible, however given the amounts of data 
generated by these experiments; it could come with a 
significant extension in processing time.  

1) Image Processing. The current image processing 
algorithm uses RGB space, this comes with an ease of use 
since the video is recorded using RGB channels and the data 
source, i.e. the headphone lights, use RGB LEDs. However, it 
might be worthwhile to explore other color spaces, such as 
HSV, in which the RGB geometry is rearranged to be more 
perceptually intuitive. Using HSV color space might reduce 
noise, with the trade-off of being potentially more finicky in 
parameter setting and adjustments to account for changes in 
lighting conditions.  

The current experiment samples one in every ten video 
frames for further processing. Increasing the sampling rate 
will allow individual motion to be tracked. In addition, one 
possibility is to combine nearby frames to inform the contour 
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modeling, thereby boosting signal strength and taking 
advantage of the video’s original frame rate.  

2) Contour Modeling. The current process of contour 
modelling is relatively straightforward, as contours are 
directly estimated from the binarized images. Lower and 
upper bounds for contour area have been defined based on the 
ESCOM data, however these should be fine-tuned per dataset. 
Adding cycles of dilations and erosions will result in contours 
with smoother edges and result in fewer disjointed contours 
coming from the same source. Performance of the algorithm 
can be assessed by comparison with human scoring of 
contours for the same frames, in addition this can indicate 
sources of noise not considered before.  

3) Graph Creation. In graph creation, one major 
improvement would be to use distance as a measure for edge 
strength. Currently, for each distance threshold, separate 
graphs need to be created. After processing video and 
extracting the centres this is the most time-consuming process. 
Using a measure for edge strength, each time point can do 
with only one graph. The formula used for encoding edge 
strength as a measure of distance can then be used to 
determine which connections to use during analysis, and 
which to discard. Additionally, this offers a more detailed 
view of grouping behaviour since groups can now be 
distinguished, not only by their size and being a group or not, 
but also by how close-knit the group is in physical space.  

V. CONCLUSION 
In this study, we developed a toolbox for the processing 

and analysis of overhead video recordings of dancers in a 
silent disco. Silent disco events present experimenters with an 
ecologically valid environment to study the interactions 
between music and the social environment in large groups of 
participants compared to laboratory settings. The toolbox 
developed so far allowed us to investigate the grouping 
dynamics of dancers in a silent disco, and how these dynamics 
change over time. Both datasets we investigated yielded 
consistent data. Specifically, we found that participants 
listening to earworms are more grouped than those listening to 
matched controls. Further development will allow for more 
detailed investigation of grouping, individual movement and 
switching behaviour under various conditions.  
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